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MODELS OF ARITHMETIC AND RECURSIVE 
FUNCTIONS 

BY 

J. H I R S C H F E L D  

ABSTRACT 

We investigate homomorphic  images of the semiring of recurs ive  funct ions  as 
models  of the FIz f ragment  of Arithmetic,  and some relations be tween this 
f ragment ,  its models  and recursion theory.  

From the point of view of model theory, Arithmetic is a very complicated 

theory for which non-standard models cannot be described in any "construc- 

tive" way. On the other hand, any systematic research in number ~heory 

concerns only a limited fragment of the whole theory and most of the theorems 

in a standard textbook lie very low in the Arithmetical hierarchy. This leads us 

to the attempt to specify a fragment of Arithmetic which is strong enough to 

include most of "number theory" and for which model theory may add some 

insight. 

In this paper we study the theory T - - t h e  II2 fragment of Arithmetic--and 

its models. It turns out that the theory and its models are closely related to 

recursion theory. The notions of recursion theory extend naturally to T and in 

view of Matijasevic's result recursive functions are absolute in these models. 

Indeed, being a model of T amounts to being closed under recursive functions. 

From the model theoretic point of view, T is inductive (the union of a chain of 

models is again a model) and the intersection of a family of models is also a 

model. 

In Section 2, we turn to the main subject--homomorphic images of the 

semiring of recursive functions. These models were suggested by Feferman, 

Scott and Tennenbaum [l] and investigated by M. Lerman [5, 6]. It was showm 

there that such models fail to satisfy an instance of the axiom of induction. We 

show that if not for trivial reasons (like having zero divisors), such homomor- 

phic images are what we call recursive ultrapowers and they are models of T. 

(Recursive ultrapowers are constructed similarly to general ultrapowers using 

Received April 26, 1974 

l l l  



112 J. HIRSCHFELD Israel J. Math., 

only recursive sets and recursive functions). On the other hand, we describe a 

formula that defines the set of natural numbers in any recursive ultrapower. 

The recursive ultrapowers are the basic models from which all models of T 

are composed (in a sense that will be made precise in Section 3). But at the 

same time every countable model of T (and in particular every countable 

model of full Arithmetic) can be embedded in such a homomorphic image of 

the recursive functions. Moreover, using an idea of H. J. Keisler [4], we 

characterize the class of countable models of T as the class of limit recursive 

ultrapowers. 

Section 4 discusses briefly some examples of recursive ultrapowers including 

those generated by a comaximal set. We disprove a conjecture by A. Narode 

(that such models have theories which are arithmetical sets) and improve a 

result by M. Lerman which gives a condition under which elementary equival- 

ence of models implies isomorphism. 

In conclusion, Section 5 outlines a similar construction for full Arithmetic. 

The class of countable models of this theory is characterized as the class of 

limit arithmetical ultrapowers. 

1. The II2 fragment of arithmetic 

We work in the language that has the symbols 0, 1, + , .  and < .  A formula in 

this language is bounded if all its quantifiers are of the form Vx < t or 3x < t 

(where Vx < ttk is Vx(x < t---~b and 3x < t~b is 3x(x < t ^ ~b)). E~ formulas are 

obtained from bounded ones by prefixing a string of existential quantifiers and 

Iq~ fomulas are obtained similarly prefixing a string of universal quantifiers. 

More generally, if ~b is in En and ~b is in tin then ~'$~b is in rln§ and 3$~b is in 

E,§ (where ~'$ is an abbreviation of Vx~-.. Vxn). 

Throughout this paper we denote by T the 1-12 fragment of Arithmetic--all 

the 1I2 statements that hold in the set of natural numbers N. 

1.1 Every model M of T includes N and is lineary ordered by < .  This 

relation satisfies 

x < y ~ 3 z ( x  + z + 1 = y) 

and N is an initial segment of M. 

1.2 A formula which is equivalent in T to a ~, formula is called an r.e. 

formula. An r.e. formula whose negation is also r.e. is a recursive formula. If 

two such formulas describe the same predicate in N they do so in every model 
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of T. (Note that a formula which is not E, may describe an r.e predicate on N 

without being r.e by our definition. But it is still the case that every r.e predicate 

on N has also E, formulas which describe it.) If a recursive formula describes 
(is the graph of) a function on N, it does so in every model of T. We call this 

function a recursive function. A recursive function, f(g) ,  may be substituted in 

a predicate ~b(z) to obtain the predicate 0(f(g)).  By this we mean the predicate 

3y(4,(~, y) A ~b(y)) where 4' is any recursive formula that describes f(~). As f is 

a total function ~b(f(g)) is equivalent in T to Vy(4,(g, y)---~b(y)). From this, it 

follows that if 0(z)  is recursive so is also Off(g)). This definition in addition 

takes care of composition of recursive functions. 

1.3 It is not hard to check that recursive formulas are closed under the 

prefixing of bounded quantifiers (the analogue for r.e formulas is false; the 

required equivalence to a E, formula does not always hold in T). Thus, we have 

in T the axiom of induction for recursive formulas: If 4,(x, ~) is recursive then 

T I-V2~(:::ly4,(.~,y)--.::ly [4,(2~,y) AVZ < y -14,()~,Z)]) 

(we can show that this may be false if 4, is only assumed to be E, and we do not 

know what the case is for 1-I~ formulas). 

1.4 Kleene's enumeration theorem has a l-I2 form. We shall need both 

f o r m s - - f o r  r.e predicates and for partial recursive functions: 

a) For every n there is an n + 1 place E, predicate F" (y ,~ )  such that for 

every n-place Z~ predicate 4,(~) we can find some i E N for which: 

T ~-V~(F"(i, .~),-~ 4, (.~, z)). 

b) There is an n + 2 place E, predicate V"(y,~,z)  which describes a partial 

function z = f ( y , ~ )  such that if 4,(Y,z) is a E1 predicate which describes a 

partial function then for some i E N:  

TFV.~ Vz(V"(i,Y,,z)*--*4,(~,z)). 

1.5 Matijasevic's theorem [7] enables us to relate the notions of recursion 

theory to simple model theoretic properties. It claims that in N, every E, 

formula is equivalent to an existential formula. As the equivalent has a I-I2 

normal form it holds also in T. 
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1.6 The ~ formulas are preserved under extensions in the class of models 

of T. Recursive formulas are absolute in this class as are the recursive 

functions in particular. Indeed, ~t is easy to see that the absoluteness com- 

pletely characterizes the recursive predicates (this was first observed by H. 

Gaifman in [2]). 

1.7 We show that T is an inductive t heo ry - - the  union of a chain of models 

of T is again a model of T. 

LEMMA. Let {M, ]i e l}.  Then [or any El [ormula ~(~) and parameters 

ti E M, Ml=th(ci) iff there is some i such that [or all i < j M~l=~b(ti). 

PROOF. The proof is by induction on the number of quantifiers. The 

statement clearly holds for quantifier-free formulas. Assume that ~ = 

3 x $ ( a , x )  and M[=$ (the quantifier may be bounded or not). Then M[=$(d ,b)  

for some b E M and the claim follows from the induction assumption. If, on 

the other hand, Mjl=3xd~(a,x) from some i on then we can fix one such jo and 

M~ I= ~ t i ,  b ) for some b E M~o. By 1.6, Mr [= ~b (t~, b) for every jo < j and again by 

the induction assumption Ml=~b(&b). 

If the first quantifier is universal, ~ must be a bounded formula. But then, 7 ~, 

is also X~ with the same number of quantifiers and the first one is existential. 

Thus, the proof above applies to 7 5 ,  and the claim for $ follows, by 1.6. 

q.e.d. 

1.7.1. COROLLARIES 

a. T is an inductive theory. 

b. If we denote by S the set of AE statements of Arithmetic (i .e.--existential  

formulas preceeded by block of universal quantifiers), then S - T. 

Part a. follows immediately from the lemma and the implication (a) ::> (b) is a 

theorem by Chang, Los and Suszko [9, p. 77]. 

1.8. THEOREM. Let M be a model o[ T and A CM. Then A is (the domain 

o[) a model o[ Tiff  A is closed under recursive [unctions (as defined in M). 

PROOF. If A is itself a model of T, then it is closed under recursive functions 

by 1.6. 

Assume that A is closed under recursive functions and let ~b be in T. By 

1.7.1, we can assume that ~b -- V$ : ly l ' ' -  yk$(,~, Y, ' "  ", yk) where ~ is quantifier 

free. It is easy to construct recursive functions [~(-~),'",[k($) such that 

N[=Vs163163 This statement (where the functions are rep- 
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resented by recursive formulas) transfers to M. As A is closed under recursive 

functions, we get for every a E A  elements b~, . . . ,bkEA such that 

Ml=~(a ,b~ . . .  bk), and as ~b is quantifier free the same is true in the  model 

whose domain is A. Hence, it is also a model of ~b. 

q.e.d. 

Recursive functions are closed under compositions thus: 

1.8.1. COROLLARY. If  M[= T and B C M then there is a minimal submodel of 

M which includes B and is a model of T. This is the closure o[B under recursive 

functions. 

As a closure under functions is preserved by intersections, we have also by 

1.8: 

1.8.2. COROLLARY. T is closed under intersections: If  {M~[i E I} are all 

models of T which are submodels of a model M of T, then their intersection is 

also a model of T. 

2. Recursive ultrapowers 

2.1 A recursive ultrafilter is a maximal collection of recursive sets of N 

with the finite intersection property. If A is recursive then its complement fi, is 

also recursive. Therefore, the maximality condition is equivalent to the 

statement that for every recursive set either it, or its complement, is in the 

filter. 

Let R be the semiring of recursive functions and let F be a recursive 

ultrafilter. We define a relation on R 

[ = Fg iff {x I [ (x)  = g (x)} ~ F. 

It is easy to see that this is an equivalence relation and we denote by [ /F  or by 

[[] the equivalence class of [. 

The recursive ultrapower R / F  is the model whose domain is the set of 

equivalence classes with respect to F. N is embedded in R / F  by the 

identification of n with the function which is constantly n. The operations 

+ and �9 are defined by: 

[[] + [g ] = [[ + g ], [[]" [g ] = [fg ] 

(where [g is pointwise multiplication). 
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It is easy to see that the definition is independent of the choice of [ and g and it 

follows that R / F  is a homomorphic image of R. 

If F contains a singleton then R / F  = N and the homomorphism is an 

evaluation. Otherwise, we get a model which strictly includes N as the identity 

function I is not equivalent to any constant function. 

2.2 We introduce order on R IF by 

I f ] < [ g ]  iff { x l f ( x ) < g ( x ) } E F  

this definition is independent of the choice of [ and g and the properties of this 

order are summarized by the following lemma whose proof is straightforward. 

LEMMA. 

a. < is a linear order on R / F  and N is an initial segment. 

b. [f] < [g] is equivalent to :Ix([/] + x  + 1 = [g]). 

Thus, the notion of a bounded formula has a natural interpretation in 

recursive ultrapowers. We shall see that these models are models of T while 

other homomorphic images of R fail to be so for trivial reasons. 

2.3 The main property of recursive ultrapowers is: 

THEOREM. I[ Oh(Y,) is a E~ formula then for any n recursive [unction f, . . . f i ,  

RIFI=4~([[,],'" "[s iff the set {x IN l=6( f , ( x ) , . . . [ ,  (x))) includes a set in F. I[, 

in addition, ck is recursive then this set itself must  be in F. 

PROOF. (Note that we treat the recursive functions as having names in the 

language. It is not difficult to restate the theorem in the terminology introduced 

in the first section.) 

First, we prove the theorem for bounded formulas. It holds by definition for 

atomic formulas and it follows immediately for Boolean combinations. We 

proceed by induction on the number of quantifiers. 

Assume that ~b = 3z < [f,]d/([[d,'"[fi], z)  and R/F[=4~. Then for some g ~ R 

R IF]= O([f,], . .-[[,  ], [g ]) ^ ([g] < I/l]). By the induction assumption 

(x I ~O([,(x),"'[. (x), g(x) )  A (g(x)  < [,(X))} E F. 

But this set is included in the set: 

{x 3z  [qJ(f ,(x) , '"f i(x) ,  z) A (Z < f,(X))]} = A. 



Vol. 20, 1975 MODELS 117 

Assume on the other hand that A E F. As ~b is recursive the following is a 

recursive function: 

g(x )  = g z f z  < L(x) ^ ,/,ff,(x),...f. (x), z)) 

(with the usual assumption that z = f ,(x) if no such z exists). Then 

{x 16(f,fx), ."  f.  (x), g (x)) ^ (g (x) </ ,(x))} E F 

and again by the induction assumption R IFl= ~O([f,],. �9 �9 [f. ], [g ]) ^ ([g] < [/,]). If 

the first quantifier is universal, i.e. 4' = Vz < [/,]~k([/,],"', [:, ], z), then 74, has 

the same number of quantifiers and the first one existential. Therefore, 

the proof above holds for 7~b. Let B be the set { x l V z [ z <  

f ,(x)--->~(f,(x), . . . ,[,(x),z)]}.  B is recursive so that B ~ F or/3 ~ F. The claim 

now follows as/3 E F iff R/FI= 74,. (Note that in the proof above, we assumed 

that in 3x < t~b t was a variable and not a general term. This is enough as 

3x < t~ can be replaced by 3x < y(~  ^ y = t)). 

To conclude the proof, we assume that ~b(X)= 3 y , . . . 3 y ~ ( 2 ) , y , . . .  yk) 

where ~ is bounded. If R/Fl=~b([/,],. . . ,[f,]) then for some g , ' " g k ,  

R/FI=~([[ ,] , . . . , I f . I ,  [g,],...,[g~]). By the first part of the proof, 

A = {x I tk(f~fx),.- .,f, (x), g,(x),...,gk(x))} E F. 

Hence, {x I (k(.f,(x),--., f,(x))} D A. 
On the other hand, if A ~ F and for 

N I = 3 y , " .  ykff(f,(x), ' '  . ,[,(x),  y , , . .  ",yk), then for every x E A 

every x E A 

Nl=3z3y ,  < z . . .  3y~ < z,kff ,(x), . . . ,[ , ,(x),  y , . . .  y~), 

we define 

~/~z(3y~ < z ...3yk < z~b(fj(x),...f,(x), y : " y k )  
g(x) I 

tO 

if x ~ A  
if x~_A. 

g(x)  is recursive and 

A C{xl3y, < g(x)"'3yk < g(x)~b(f,(x),.".f.(x), Yz"'Yk)}. 

This formula is bounded so that 
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R/Fl=3y, < [gl "'" 3yk < [g]~b([[,],..., [f, ], y , . . -yk) .  

Israel J. Math., 

q.e.d. 

2.4 COROLLARY. If F is a recursive ultrafilter then R IFl= T. 

PROOF. Assume that ~ b E T  where ~b----VX3yc--yk~/,(.~,y,--'y~) and ~ is 

bounded. For every fl...fn, 

N = {x 13Y,"'yk~'(f,(x)"'fn (x), y,"'Yk)}. 

By Theorem 2.3, R/F[=3y, . . . ykd / ([ f , ] , . . , [ f , ] ,y , . "yk) .  As 

arbitrary - -  R I FI= 6. 
f ~ " ' f n  are 

q.e.d. 

2.5 The following observation whose proof is immediate by 2.3 will be 

useful: 

LEMMA. If 6 (x,) is a E, formula which is the graph of the recursive function 

f (x)  = y then : 

R IFI=4~([I], [f]) 

where I is the identity function. More generally--i f  ~(~ ,y)  is the graph of 

h(~) = y then for every f l "  "f~ 

RIFl=O([fd,. . . ,  If, ], [h i f , . . .  ,.f, )]). 

2.6 THEOREM. Let V(i, x, y) be the graph of a universal partial recursive 

function (1.4). The following formulas define M - N  in every recursive ul- 

trapower M. 

~b(z ) -Vx3y[y  <z  ^ V(y,[I],x)] 

~ ( z ) - ~ s V x 3 y [ y  <z  ^ V(y,s,x)] 

PRooF. If z is finite, then the partial recursive function described by V 

obtains only a finite number of values for a fixed s and for 0, 1,...z - 1. If on the 

other hand, z is infinite then for every recursive function f, there is an i E N (so 
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that i < z )  such that V(i,x,y) is the graph of f ( x ) = y .  By Lemma 2.5, 

MI= V(i,[I],[[]) and, therefore,  ~(z)  and ~(z)  hold. 

q.e.d. 

2.7 We denote by N(x) the negation of ~(x) .  N(x) is a formula which 

defines N in every  recursive ultrapower. Let  K be the set of statements which 

hold in all recursive ultrapowers. Then for every statement ~b, 

Nl=~b iff KI=4," 

(where ~b N represents the relativization of ~b to N(x)). 
Thus, no consistent extension of K is an arithmetical set. N itself can be 

obtained as a trivial recursive ultrapower so that we have K C (N),  and indeed, 

T(N) =- K U {VxN(x)}. It follows also that K is a much richer theory than T as 

the last one is arithmethical. Finally, as we shall note in Section 4, there are 

many recursive ultrapowers which have arithmetical diagrams. 

2.8 To conclude this section we discuss briefly other homomorphic  images 

of R. Let  tr be such a homomorphism onto a semiring S. Disregarding the trivial 

case, we can assume that o ' (1)= 1 - the unit of S. We show that if S has no 

zero divisors then or determines a recursive ultrafilter F such that cr can be 

lifted to R/F. 

For every recursive set A and its characteristic function X,~ we have: 

XA +Xx = 1 XA "XX = 0 ,  

and 

~ ( x ~ ) l ~ ( x ~ )  = 1 o'(XA)" c r ( x x )  = 0. 

We conclude that cr takes one of the functions to 0 and the other to 1. Hence,  

the following is an ultrafilter: 

F = {A Io'(XA) = 11. 

It remains now only to show that the definition, rr([[]) = tr(f),  is independent  of 

the choice o f / .  So assume that Lf] = [g] and A = {x IJ'(x) = g (x )} E  F. Hence,  

tr(XA) = 1 and XA "f = Xa "g. This yields: 
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o- ( / )  = o'(xA )o ' ( f )  = o ( x , , [ )  = o ( x , , g  ) = ~r(g ), 

and our claim is proved. 

Thus, any other homomorphic  image with no zero divisor must identify two 

elements of some recursive uitrapower. This means that no order similar to that 

of N can be introduced because it is always the case that 3 x 3 y ( x  = x + y + 1). 

3. The models of T 

In this section, the relations between recursive ultrapowers and general 

models of T are investigated. 

3.1 Let  M be a model of T, and c ~ M. From Sec. 1, we know that the 

minimal model which contains c in M is the closure of c under recursive 

functions. This closure is abso lu te - - i t  is the same in every extension of M 

which is a model of T and in any such submodel that contains c. We shall see 

that this closure is a recursive ultrapower so that such ultrapowers are in a 

sense the elementary compounds of which models of T (and T(N))  are 

constructed.  

For  M and c, as above, let F be the filter: 

F = {6(x) lM[=6(c) ,  4~ is recursive} 

(we identify recursive predicates with recursive sets). 

THEOREU. The correspondence f/F---~f(c) is an isomorphism between R / F  

and the minimal models of T generated by c. 

PROOF. The correspondence is well defined: if [.f] = [g], then the predicate 

f (x )  = g(x)  (represented by a recursive formula) is in F so that f ( c ) =  g(c). 

Similarly, one shows that the correspondence is one to one. 

From the definition, it is clear that the image of R / F  is exactly the closure of 

c under recursive functions. 

The operations are preserved: If (for example), ~ ] + [ g ]  = [h], then the 

predicate f ( x ) + g ( x ) =  h(x)  is in F so that f ( c ) + g ( c ) =  h(c). 

q.e.d. 

3.2 On the other hand, we shall see that the recursive ultrapowers are rich 

enough in structure so that every  countable model of T can be embedded in 

such a model. Furthermore,  we shall characterize the class of countable models 

of T by means of recursive ultrapowers. 
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THEOREM. If M is a countable model of T then there is a recursive ultrapower 
that includes M and in which M is existentially complete. 

PROOF. Let aw"an, '"n <a ,  be any ordering of M and let ~b(i,x,y) be a 

recursive formula that describes the function (x)~ = y (y is the highest power to 

which the i'th prime number divides x). Let T(M) be the complete theory of M 

with the names of the elements of M. Finally let c be a new constant and 

denote by T the theory 

f '=  T(M) U {ck(i,c,a,)li E N}. 

is consistent as M can be turned into a model of any finite part of it by the 

appropriate choice of c. Hence T has a model M~. Let M0 be the closure of c 

under recursive functions in M,, so that Mo is a recursive ultrapower. As all 

models above are models of T, ~b defines the same function in all of them, so 

that M C Mo. As MI is an elementary extension of M, M is existentially 

complete in every submodel of M1 and in particular in Mo. 

q.e.d. 

The converse of the theorem is easy: 

THEOREM. If Mo I = T and if M is existentially complete in Mo, then MI= T. 

PROOF. This follows from the fact that T is inductive. Let ~k be in T. By 

1.7.1, we can assume that qb - V g : l y ~ . . .  y~0(g,y~,...,y~) where 0 is quantifier 

free. For arbitrary t~ E M, M01=3y~ .. .  y~O(tL y~ ' "  yk) and as M is existentially 

complete the same holds in M. Thus MI---4,. 

q.e.d. 

3.3 COROLLARIES 

a) The countable models of T are exactly the existentially complete sub- 
models of the recursive ultrapowers, in particular: 

b) All countable models of full Arithmetic are submodels of homomorphic 
images of the semiring of recursive functions. 

Corollary b) is the main result of [3] where a more complicated proof replaced 

the use of Matijasevic's theorem. 

3.4 We present another characterization of the models of T in terms of 

recursive ultrapowers. Here we use an idea of H. J. Keisler [4]. 
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DEFINITIONS 

a) Let  G be a collection of partitions of N. G is a partition filter if the 

common refinement of two partitions in G is again in G, and if any partition 

which is coarser than a partition in G is also in G. 

b) For every function f:N--->N we denote by (f) the partition x -= y iff 

f (x  ) = f(y).  
c) If F is a recursive ultrafilter and G a partition filter then the limit 

ultrapower R / F / G  is the submodel of R / F  of (the classes of) the functions f 

for which (f) agrees with some partition of G on some set in F. 

3.5 THEOREM. If  f is a recursive ultrapower and G a partition filter then 

M = R / F / G  is existentially complete in R/F.  

PROOF. Assume that R/Fl=ck(ff,],'" "[/,], [g,],'"[gk]) where 4, is quantifier 

free and ~ ]  E M i = 1...m. Then: 

{x I Nl=4,(f ,(x), . .  "s g,(x) , . . ,  gk(x))} = A E F, 

we define h(x): 

{lzycb(f~(x) . . . f .(x), (y)~,"'(y)k) if x E A  
h ( x ) =  1 x ~ A .  

h is recursive and so are the functions g](x)= (h(x))~ i = 1...k. For every 

x E A  
NI =4~( f , (x ) , ' ' ' f . ( x ) , g i (x ) ' ' "  g~(x)) 

so that RIFl=ck((lf, l , . . .  [f~), [ g i l " "  [g~]). 
By the definition of h if each one of the functions fj. .-f,  obtains the same value 

for the elements x and y in A then so do also g i . . .  g ~. Thus g] is coarser (on A) 

than the common refinement of ( f , ) . . .  (/,) so that [gj] E M for i = 1 . . .  k. 

q.e.d. 

3.6 We have also the converse: 

THEOaEM. Let R / F  be a recursive ultrapower and M a submodel which is 

existentially complete in R/F.  Let G be the partition filter generated by 
{(f) l[/] E M}. Then R / F / G  = M. 

PROOF. Clearly M CR/F/G.  So assume that (g) is in the filter, we shall 

prove that [g] E M. By the definition of the filter, there are functions f c " f ,  
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such that ~ ] E M i = 1...n and (g) is coarser than the common refinement of 

(/~).. .(/, ). Let ~bt(x,y) i = 1...n and ~(x,y)  be the graphs of f~(x) and g(x) 

respectively described by existential formulas (which is possible by Mati- 

jasevic's theorem). By 2.5, 

RIFI=4~,([I], If,l) ^ " - ^  4,n ([I1, Ifn]) ^ ~([ I ] ,  (g]) .  

As M is existentially complete there are I '  and g' such that [I'] E M, [g'] E M 

and 

R / F I = 6 , ( t r ] ,  If, l) ^ '"  "^ 6 .  ( [ r ] ,  b'.l) ^ ~,([r] ,  [g ']) .  

Thus the following set is in F:  

{x I ,#,(r (x ), / ,(x )) ^... ^ 4~ ( r ( x  ), f.  (x )) ^ q, ( r  (x ), g '(x ))) 

= {x I / , ( I ' ( x ) )  = L ( x )  ^ . . .  ^ h ( l ' ( x ) )  = h ( x )  ^ g( l ' (x) )  = g ( x ) } .  

We complete the proof by showing that on this set, g and g'  agree so that 

[g] = [g']. Indeed if x is in this set then by the first n conjuncts x and l ' (x)  are 

in the same classes of ~ )  i = 1...n. By assumption, they are also in the same 

class of (g) so that g(I'(x)) = g(x). By the last conjunct, this equals to g'(x) so 

that g(x) = g'(x). 

q.e.d. 

3.7 Thus the limit recursive ultrapowers are exactly the existentially 

complete submodels of recursive ultrapowers. By 3.3, we have: 

COROLLAS','. The countable models of T are exactly the limit recursive 

ultrapowers. 

4. Examples of recursive ultrapowers 

In this section, three particular kinds of recursive ultrapowers are briefly 

discussed. 

4.1 Comaximal ultrapowers. Let S be a maximal (r-maximal) set, i.e., S is 

r.e, its complement S is infinite and for every r.e (recursive) set A either A N 

is finite or S -  A is finite Let F be the collection: 

F = {A ]A is recursive and S - A is finite}. 
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It is easy to see that F is a recursive ultrafilter, f -= pg, iff f (x )  = g(x)  a.e on 

(i.e. for all but a finite number of elements of S, f(x) = g(x)) and [jr] + [g] = [h] 

iff f ( x )+g(x )= h(x) a.e on S. Thus, R/F  is the model R/S  which was 

suggested by S. Tennenbaum [1] and investigated by M. Lerman in [5] and [6]. 

4.2 Remark 2.7 disproves the conjecture by A. Nerode in [5]; the theory of 

a comaximal ultrapower is never an arithmetical set. On the other hand, these 

models provide an example of a recursive ultrapower with an arithmetical 

diagram. It is easy to define by a formula the equivalence relation modulo S on 

the indices of (total) recursive functions, to choose by a formula a set of 

representatives and to define the operations on this set by a formula. 

4.3 M. Lerman showed in [6] that two comaximal ultrapowers which are 

elementary equivalent are isomorphic. We can strengthen this result: 

If S is r-maximal and F a recursive ultrafilter then R/S  - R /F  iff they are 

isomorphic. 

We outline the proof that uses the predicate N(x) which defines N in both 

models. For every recursive formula cb(x) R/SI=4,([I]) iff: 

R / S I = 3 j [ N ( j )  ^ V i ( N ( i )  ^ I < i ^ i E S--> 4)(i))]. 

Using the universal r.e. predicate F(i, x) we can describe the recursive type of 

the identity [I] by a single formula. Furthermore, the fact that an element 

generates the whole model is expressible by a formula. Thus, R/F  is also 

generated by an element with the same recursive type and it is easy to construct 

an isomorphism that takes [I] to this element. 

4.4 Minimal models. Ordering the recursive functions f l " " [ , " ' ,  it is easy 

to get a decreasing sequence of infinite recursive sets A I.--A,... such that each 

one of the functions f l " ' f ,  is either constant or monotone on A,. Extending the 

sequence to a recursive ultrafilter we get a model of T whose only submodel 

which is also a model of Tis N. 

A simple splitting argument at the construction of the sequence shows that 

there are 2" such models which are pairwise non-isomorphic. 

5.5 Existentially complete ultrapowers. Every infinite r.e set includes an 

infinite recursive subset. It is easy to construct a recursive ultrafilter F such 

that every r.e set includes some member of F or is disjoint to some member of 

F. 



Vol. 20, 1975 MODELS 125 

CLAIM. If F is such a filter then R /F  is existentially complete. 
We outline the proof: Assume that RIFl=Tq,(If,], '"[f.]) where ~ is 

existential. By 2.5, {x I tk(fl(x)...(x))} does not include a member of F. By the 

construction of F there is some A E F such that A is disjoint to this set. A is 

described by a recursive formula O(x) so that 

Nl=qJ(x)~ Tckff,(x),.. .f~(x)). 

Clearly the same holds also in T (where the functions are replaced by formulas 

that describe them). If M is a model of T that includes R/F  then Ml=g0([l]) and 

M l = ~ ( [ t ] )  = if, I; hence, Ml=7~( f f l ] . . .  [/,]). This proves the claim. 

4.6 In models as above there is a simpler definition of N. Let S be a simple 

set--i .e,  an r.e set whose complement is an infinite set Which does not include 

an infinite r.e subset. Let s(x) be a formula that describes S and assume that 

R/l~=Ts ([.f]). Then {x If(x) E S}~  F and by the construction of F we get a 

set A E F which is disjoint from this set. Hence, f (A)  C S and F(A)  is finite. 

Thus [ is constant on some set of F, and [f] E N. We conclude that in R/F  
every non-standard element satisfies the formula a(x) and the following 

formula describes R/F  - N: 

q,(z) = Vy(y > z--* s (y)). 

5. Arithmetical ultrapowers 

A similar theory can be developed for models of full Arithmetic in terms of 

elementary substructures rather than of plain submodels. Indeed, much of it 

was done by A. Robinson in [8]. We outline the construction: 

5.1 Arithmetical ultrapowers are defined similarly to recursive ultrapowers 

using maximal filters of arithmetical sets and the family of arithmetically 

definable functions. 

5.2 Let M be a model of full Arithmetic and A C M. The closure of A under 

arithmetical functions yields a minimal elementary submodel of M which 

includes A, (if A is a singleton we get an arithmetical ultrapower). From this it 

follows also that the intersection of any number of elementary submodels of a 

model of Arithmetic is again an elementary submodel. 

5.3 Every countable model of full arithmetic can be elementary embedded 

in an arithmetical ultrapower. 
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5.4 A limit ari thmetical  u l t rapower  is an e lementary  submodel  of  this 

ul trapower.  Converse ly ,  every  e lementary  submodel  of an ari thmetical  ul- 

t rapower  determines  a partition filter so that the corresponding limit u l t rapower  

is this submodel .  

5.5 Hence  the countable  models  of  full Ari thmetic are just the limit 

ar i thmetical  ul trapowers.  

5.1-5.2 were proved  by  A. Robinson [8] and 5.3-5.5 are proved  similarly to 

3.2, 3.5, 3.6 and 3.7. 

A d d e d  in proof .  A more detailed discussion of 1.1-1.6 which were  re- 

marked about  here without proofs  can be found in Forcing, Ar i thmet ic  and  

Divis ion Rings  by W. H. Wheeler  and the present  author  which will be 

published by Springer Verlag. Examples  4.4 and 4.5 are also taken f rom there. 
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